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Abstract. Multistep methods for initial value problems are expressed in a matrix 
form. The application of such methods to higher-order equations is studied with the 
result that new techniques for both first- and higher-order equations are found. The 
direct approach to higher-order equations is believed to offer speed and accuracy 
advantages; some numerical evidence is presented. The new technique applied to 
first-order equations is a slight extension of the conventional multistep method and 
avoids the Dahlquist [2] stability theorem, that is, these new k-step methods are of 
order 2k and yet convergent. The matrix formalism introduced provides an easy 
mechanism for examining the equivalence of methods as introduced by Descloux 
[3]. It is pointed out that the new first-order method on k- steps, Adams' method on 
(2k - 1)-steps and Nordsieck's [71 method with 2k components are equivalent to 
each other. In fact, all methods discussed can be placed in equivalence classes so 
that theorems need only be proved for one member of each class. The choice be- 
tween the members of a class can be made on the basis of round-off errors and 
amount of computation only. Arguments are given in favor of the extension of 
Nordsieck's method for general use because of its speed and applicability to higher 
order problems directly. The theorems ensuring convergence and giving the asymp- 
totic form of the error are stated. The proofs can be found in a cited report. 

1. Introduction. This paper is concerned with the integration of initial value 
problems for a system of ordinary differential equations of the form 

(1.1) y (P%) = f (x y . .., 1, - ,Us ),1 i = 1, 2, , s, 

where 8(k) = dky/lXk. The motivation for the work was to try and integrate such 
equations directly rather than as a larger system of first-order equations. The study 
led to a matrix representation for mnultistep methods that is an extension of a similar 
representation due to Descloux [3]. This representation provides a unified approach 
to equations of all orders; it is sufficient and easier to study it in detail for first-order 
equations. The usual theorems of stability and convergence, etc. are stated for gen- 
eral higher-order systems in Section 5. The proofs can be found in Gear [5]. 

2. Multistep Methods. The equation y' = f(x, y) is frequently integrated nu- 
merically by a predictor-corrector algorithm of the following form: 

Let xn = xo + nh where h is the step size, and let yn and yn' be approximations to 
the values of y(xn) and dy((xn)l/dx obtained in some manner. The values of y and y' 
at xn+? are found by the sequence of steps: predictor formula 

k 
(0) _ * 

O*hy'-j (2.1) Yn+- =1 (% Y.n-? + j hyn1?i), 
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corrector formula 
(1) (0) 

Yn+1 = Yn+1 

(2.2) - Fo [? (* j d UYn-j+1 nf hy?)+1- hf(xn+1, Y(n4] 

further correction iteration 
(m+1) (mn) (n-i1) (in) 

Y n+1 = Yn+1 - iO[hf(Xn+l ? Yn+1 ) - hf(Xn+l ? Yn+1) ) 

(2.3) mr =1,*- ,M -1, 
and 

Yn+1 = Yn+1( Yn+1 = f(xn+l Yn+ 1)) 

Ml is an integer that may be fixed or picked according to the changes in corrector 
iterations. Note that substitution of y (01 from (2.1) into (2.2) yields the usual 
form of the corrector formula: 

k 

Y Zn+ (ajyn-j+l + 3jhy'-j+1) + 00hf(xn+l , Yn+l) 
J-1 

In order to represent this algorithm more compactly, we make the following 
definitions: Let the column vector yn be the transpose of 

(2.4) [Yn, Yn-i, * * , Yn-k?1, hy', hy1, * *, k+1 

Let the column vector yn(m) be the transpose of 

(25) [Yn( Y n-1 Y 1n-k+l y hf( Xn , Yn ) hn-1 )***)hnkl 

formin = 1, 2, -- , M,and 

(2.6) [Yn(O), Yn-1 , * Yn-k+l - dn hyi h * * k+1, 

for ? = 0, where 

dn a= 
ai 

( y_ j* 1j hyn-j = ft (Yn* - +/3io n3ih ) 

and can be thought of as a "predicted" value of hyn'. 
Let the 2k X 2k matrix B be 

_i.I _31 C1 .. .. .... Ck 1 .. .. *P ***k 

1.. 0 

.... Y . 

.. 
O -1 0 

_ __ _ ___1__ ____ 
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where yi = (ai* - ai)/3o and 6i = (fj* - Oj)/3o. Let the column vector 1 be the 
transpose of 

[-00 0) ., O, -1,0 , ., O]. 

The predictor formula (2.1) and the definition of yn?)A by (2.6) give 

(2.7) ()= By. 

The corrector formula (2.2) and the definition of y(-), by (2.5) give 

(2.8) Y )= Y(n)1 + 1F(y(n)1 

where 

F(vn+l) = Vk,n+l - hf(xn+l y VO,n+l)) 

and vo,n+i and Vk,n+l are the zeroth and kth components of the vector v,+1 respectively. 
Further corrector iterations (2.3) and the definition of YTnm?1 by (2.5) give 

(2.9) + = y2iI- 1F(y(m1) 

and 

Yn+1 = Yn+1 - 

Components of the matrix B and the vector 1 are chosen so as to get desirable 
accuracy and stability properties. The most common choices make the method exact 
for a class of polynomials so that the error term can be expressed as a high power of 
che presumably small quantity h. In order to continue the discussion the following 
terms are defined: 

Polynomial Degree. A method has polynomial degree q if it is exact for all problems 
whose solutions are polynomials of degree q or less. 

Degree. A method has degree q' if the error after one step starting from exact 
values is 0(hq+'). 

Order. A method has order q" if the error over a fixed finite interval of integration 
starting from exact values is O(hq). 

q is what is commonly called the order of the predictor; that is, the degree of 
polynomial for which the predictor is exact, while q' is the order of the corrector 
provided that q + M is at least q'. (The order of the error introduced by the pre- 
dictor can be increased by one for each corrector iteration up to the order of the 
corrector.) 

The well-known Dahlquist [2] stability theorem states that a k-step method 
cannot have order greater than k + 2, and even then only for weakly stable methods. 
Strong stability restricts the order to k + 1. (Instability means that the error grows 
unboundedly as h -? 0 over a fixed interval of integration.) Dahlquist has also shown 
that the coefficients can be chosen so as to achieve polynomial degree 2k - 1 and 
degree 2k. Assuming that a high order is desirable, it is unfortunate that such 
methods are necessarily unstable. Recently, effort has been made to overcome this 
problem by Gragg and Stetter [6], Butcher [1] and Gear [4]. However, these tech- 
niques involve one or more extra evaluations of f(x, y) at points other than xn and 
they only appear to be applicable for a finite number of values of k. 
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One necessary condition for convergence is stability. Let us examine this problem 
in the matrix formulation. If a method is to converge for all problems it must cer- 
tainly converge for problems whose solutions are polynomials of degree q for which 
the method is exact. Suppose that an error has been generated by round-off in such 
a problem. Further, consider a problem in which af/ly 0. Let yn' be the correct 
value of y(xn) and define 

(2.10) En = yn Yn Y Yn+1 = Byn X 

(2.11) y(n+l)C = y(mn +IF( 

and 

En Yn ( Yn( 

Subtract (2.10) from (2.7) and (2.11) from (2.9) to get 

E(0) (m+1) (m) I(,F ,0 )Pm) 
n+1 = BEn d4n+1 = En+1 + 13F/O n+y 

where OF/Oy is the row vector whose elements are the partial derivatives of F with 
respect to y. In this case, OF/Oy is the vector ekT = [0, ... 0, 1, 0, , 0], a 1 in 
position k. Since P??+l = en+1 En+,= ( + Iek mB?n = S. Thus a necessary 
condition for stability is that the eigenvalues of S are inside I z < 1 or on I z I = 1 
and simple. Thus Dahlquist's theorem is a restriction on the degree such that S is 
stable. 

Conventional multistep methods restrict the choice of 1 to the form above which 
has one degree of freedom. It is reasonable to ask what happens if an arbitrary form 
of 1 is allowed. The answer is given in the theorems stated in Section 5, namely, 
that stable convergent methods of order 2k can be found for any value of M. In 
fact, 1 can be chosen to make the nonprincipal roots of S take on any set of stable 
values. (One root must be 1 if the method is of polynomial degree ?0, this is the 
principal root.) Therefore there exist modified k-step methods of order 2k which 
require only one function evaluation. An example of a 3-step method is given below. 
2- and 4-step methods are given in Gear [5]. It is written in a conventional predictor- 
corrector form. The superscripts Ci and C2 refer to additional corrections of the 
function values due to nonzero terms in 1 where there are zeroes in the conventional 
method. 

Yn+= -l8yn + 9ynCi1 + 1n0-2 + 9hyn + 18hy'n- + 3hy'n-2 
hy P+= -57yn + 24YCl1 + 33yn2 2 + 24hyn + 57hyn_1 + 10hy'2, 

F = -hy' i hf(x.+?, y n+i) 

Yn+ = Yn+1- (95/2S8)F, 
Y = yn + (3/160)F, 

Yn-1 = ynL1 - (11/1440)F, 

hyn+1 = h 1- F. 

This method is a stable, sixth-order 3-step method. It is a modification of the con- 
ventional multistep method by the addition of corrections to all saved function 
values at each step. It will be referred to as an "M-method" (modified multistep 
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method). In matrix form, this method is written as 

F-18 9 10 9 18 3 
1 0 0 0 0 0 

(0) 0 1 0 0 0 0 
Yn+l1= -57 24 33 24 57 10 Yn 

O O 0 1 0 0 

L g O 0 1 0g 

and 

F -95/288 
+3/160 

(0)1 -1/1440 F. 
Yn+1i=Yn+1+ -1 

F 

The matrix S (I + hEkT)B is of order 6 and has 5 eigenvalues equal to zero 
(referred to as nonprincipal eigenvalues) and one eigenvalue equal to one (referred 
to as the principal eigenvalue). 

Because of the additional nonzero terms in 1, the definition of yn by (2.4) is no 
longer adequate. It can be re-expressed verbally by saying that yn is the vector of 
function values and derivatives given by (2.4) as evaluated at Xn. Yn is precisely 
defined by (2.7) and (2.9). 

3. Equivalent Methods. The modified multistep method presented in the last 
section can be shown to converge, but there are legitimate questions concerning its 
accuracy and stability for nonzero hdf/dy. These will be answered in this section by 
showing that the method is equivalent to the (2k - 1) step Adams' predictor-correc- 
tor method. 

It is convenient to view the algorithm in the following manner: The vector 
yn consists of the saved information that represents the total knowledge of the func- 
tion at xn. Using this information, the function is extrapolated to the point x1+1 
by a method that can be chosen to be exact for any desired set of functions, for ex- 
ample polynomials of degree 2k - 1. This extrapolation is specified by y(), = Byn. 

This process alone cannot be stable because no account is taken of the differential 
equation. Therefore, it must be stabilized by use of the differential equation F = hy' 
-hf(x, y). If the extrapolation is exact, then F(y(0)1) = 0 so that any multiple 
of F may be added to y(?)1 without changing it. F(y(01) is the amount by which the 
extrapolated value fails to satisfy the differential equation locally. Hopefully, 1 can 
be chosen to both make the process stable and increase the degree of the method. 

In this view, y is a representation in some coordinate system of a member of the 
class of functions used in extrapolation, typically the class of polynomials of degree 
2k - 1. The class can equally well be represented with respect to another coordinate 
set by a linear transformation. Let Q be any nonsingular 2k X 2k matrix and define 

a = Qy. 
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Then the method given by (2.7) and (2.9) can be transformed into 

(3.1) a(=), Aa. and 
(m+1) (in)(n 

anm+1= a(m) + kG(a(n) 
(3.2) n(1M), 

an+1 an+1, 

where A = QBQ-', k = Q1 and G(a) = F(Q-1 a). 
Eqs. (3.1) and (3.2) give a method equivalent to (2.7) and (2.9) in the sense 

that equivalent methods give equivalent results from equivalent starting conditions 
in the absence of round-off errors. Thus the class of methods equivalent to any k-step 
method is given by the class of nonsingular transformations of 2k space. In par- 
ticular, instead of the vector yn as a representation of a degree (2k - 1) polynomial, 
the vectors 

ZnT = {?y' , hYn', hy *- hy-2k+2 

and 

an = {Yn hynI' h2Yn"/2!, h3yn""' /3!, ... I h2k-ly(2k-l)/(2k - 1) !} 

can be used. When the appropriate transformation is made, methods equivalent to the 
k-step modified multistep method are obtained. If the particular modified multistep 
used has zero nonprincipal eigenvalues and degree 2k, then the transformed methods 
have the same properties. In this case, the representation by the vector z must lead 
to Adams' method where the (2k - 1)th order predictor and 2kth order corrector is 
used, while the method using the vector a as a representation must be Nordsieck's 
method, since these are the unique methods with the given properties. 

The common property of each of these methods is that they save 2k items of 
information, whereas the modified method is a k-step procedure and Adams' 
method is a (2k - 1)-step procedure. It is therefore convenient to classify methods not 
by the number of steps but by the number of values saved. Thus there are k-value 
methods for any k > 0 with any set of nonprincipal eigenvalues and for even k 
there are equivalent k/2-step methods. 

4. Higher-Order Equations and the Choice of Method. The question of which 
method to use for a given problem can now be broken into two questions. Firstly, 
which class of equivalent methods are most desirable. This choice determines the 
truncation error of the procedure so can only be answered when a specific problem 
is being discussed. Secondly, which member of a class is the best representative. 
This choice affects the round-off error and the amount of computation. Before 
answering the latter question we will look at the general initial value problem given 
in the Eqs. (1.1) since it will be claimed that the Nordsieck or N-method becomes 
particularly advantageous in the case of higher-order equations. 

For each dependent variable yi choose the representation aj, = in hyi , n. 

hki-1y ,ki_)/(ki-1) !} T, where T is the transpose operator. Extrapolate each dependent 
variable by suitable ki X ki matrices Ai to get 

(4.1) a -o) A iai 
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Write the differential equations as 

F (aj) = h - fi(x, Yi , , y(Ps )}/! = 0. 

If the extrapolation is correct, then the Fi( aj,?+1) are zero so that arbitrary multiples 
of Fi can be added to the predicted values of ai,n+ . Thus the corrector 
iteration is 

(4.2) a8m+7h) = a(m)?I + 1iFj(a(` ?1). 

It can be shown that Ai and 1, can be picked on the basis of the order pi of the dif- 
ferential equation for the ith variable only so as to get stable convergent methods. 

It should also be noted that a given dependent variable need not be corrected at 
every step. For example, the jth variable might be corrected every Sj steps. This 
would be equivalent to using a step size Sj times as large for that variable, in that the 
function Fj need only be evaluated l/Sj times as often. 

Each dependent variable may be separately transformed by nonsingular matrices 
to get equivalent methods. One advantage of the N-form is the immediate availa- 
bility of higher-order derivatives for evaluating Fi . In a multistep formulation, the 
derivatives must be obtained by a numerical differentiation formula, a process which 
can contribute to round-off errors. 

Of the highest-order formulae, three types of methods might be considered as the 
most useful: Adams, Nordsieck, and the new modified multistep method. A fourth 
"extreme" that might be considered is to save k - 1 function values and one deriva- 
tive, but it is almost uniformly worse than Adams' method from the point of view 
of both computation and round-off, so it will not be discussed. 

Computationally, except for large values of k, the Nordsieck type method is 
superior. This is because the multiplications involved in forming Aa can be avoided. 
In the Adams and M-methods, the matrix contains 2 nontrivial rows, whereas at 
first sight A contains k(k + 1)/2 nonzero elements. However, they form the Pascal 
triangle: 

1 2 k-i 

A= 0 

k-i 

L 

Because of the properties of the triangular numbers the predictor step can be handled 
without multiplication by: 

"for i: = 0 step 1 until k - 2do 

forj: = k - 1 step - 1 until i + 1 do 

a[j - 1]: = a[j - 1] + a[j];", 

where a[j] is component j of the vector a. 
Restricting consideration to methods with zero nonprincipal eigenvalues since 

these are the most likely choices, Table 1 can be constructed. Unless k is large, the 
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Nordsieck method is superior. It also has computational advantages in step size 
changing. 

If round-off error is significant, then it generally requires less effort to carry 
additional precision in the Nordsieck method than in any other method. In other 
multistep methods, each saved value may have to be carried in multiple precision. 
In Nordsieck, higher-order derivatives are scaled by powers of h and may be ex- 
pected to decrease in significance, so that they can be saved with correspondingly 
less precision. 

The M-method's only advantage is in starting. If function evaluation is simple, it 
requires less work to generate k/2 initial points. 

For general use, this writer recommends the Nordsieck type method, particularly 
since in the proposed implementation, the only change required for different order 
equations is in the vector 1. (An interesting question concerns the existence of vec- 
tors 1 which give rise to stable methods for several different order equations.) 

Multiplications Additions 

Nordsieck k + M-2 k(k + 1)/2 + 2M-2 
Adams 2k + M-2 2k + 2M-3 
M-Method 5k/2 + M - 1 5k/2 + 2M - 3 

TABLE 1 

Number of operations for k-value methods with M corrector iterations 

5. Stability and Error. This section states the relevant theorems concerning 
methods in the Nordsieck formulation. By equivalence, these theorems are also 
valid for all other formulations. One valuable feature of this formulation is the rela- 
tive simplicity of the proofs of the theorems. These proofs can be found in Gear [5]. 

THEOREM 1. A k-value method of polynomial degree k - 1 exists. (This follows 
directly from the Pascal triangle matrix A.) 

THEOREM 2. For the Pascal triangle matrix A, a vector 1 exists such that the k - p 
nonprincipal eigenvalues of S = (I + lepT)MA take on any desired set of values in 
I z I < 1, that is S is stable. epT is the vector with a 1 in position p, so that S takes the 
form: 

p k-p 
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The p X p principal minor contains the p principal roots equal to 1 for a pth order 
equation. 

The choice of eigenvalues of S takes care of k - p degrees of freedom in 1, in 
fact it determines exactly the last k - p components. The first p can be used to 
improve the degree of the method. 

THEOREM 3. If the truncation error is suitably defined, the first p components of 1 
can be chosen to make the degree of the method k + p - q - 1 where q is the largest 
integer such that dfi/ly (q) # 0. The integration of pth order equations introduces a 
factor of h-' in the total truncation error with the result that: 

THEOREM 4. If the matrices Si corresponding to the ith variable (i = 1, * , s) are 
stable and if the degree of the method for the ith equation is di then the method converges 
wvith order t = mini=1,...,, (di - pi + 1) provided that t > 1. 

Finally, for almost all values of li, a truncation error Ti(x) can be defined in 
terms of the derivatives of the solutions such that the asymptotic form of the error 
is htei(x) where 

e(" (x) - ej k)(x) = Ti(x). 
j=1 k-=O a9y1( 

6. Numerical Test. The two main contentions of this paper are that the Nord- 
sieck formulation is superior in general and that it is better to treat higher-order 
equations directly. The former question rests solely on programming considerations 
and is treated in Section 4. The latter question may depend on the equation being 
integrated. One lengthy computational test has been made. The differential equation 
for the Bessel function J16(x) was integrated for x = 6(h)6138 where h took the 
values I, I and 4 in separate runs. In the first case, it was treated as one second- 
order equation: 

F = h2 + h Y + h 1 256 0 
2 2x 2\x 

or 

F = a2 + ha, + hz (1 _ 256) aO = 

and in the second case it was treated as the pair of first-order equations: 

F1 = hy' - hz and F2 = hz' + hz +h (1 256\ y = o 
X X 

or 

F1 = a1,, - ha2,0 = 0 and F2 = a21 ha2 + h 1 56) al,o= 0. 

Similar starting procedures were employed in both cases (all higher derivatives were 
initially set to 0, then 8 steps of h/16, and 4 steps each of h/8, h/4 and h/2 were used 
before a final doubling of the step size to h). 
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The error, computed as the average of the absolute errors at 6132, 6134, 6136, 
and 6138, is shown on a log-log graph in Fig. 1 for 5-, 6-, and 7-value methods with 
zero nonprincipal eigenvalues. These are expected to have order 5, 6 and 7 when 
p = 1 and 4, 5, and 6 when p = 2. The 5-value p = 1 method does not show this 
behavior and the h = I16 point on the 7-value p = 1 method does not agree with the 
other two points. The integration was performed on a CDC 3600 in floating-point 
(about 10-digit precision) so rounding error should be insignificant except possibly 
in the latter case. The former inconsistency may be due to an unlucky choice of error 
measurement since it alternates in sign over the integration interval. 

The conclusion that can be drawn from the graph is that there is a strong indica- 
tion that the same-order method for p = 2 is more accurate than for p = 1. This is a 
proper comparison since a 6-value method for p = 2 requires that a fifth derivative 
of y be saved, as does a 5-value method for p = 1. Further, the amount of work in 
a (k + 1)-value method for p = 2 is less than that in a k-value method for p = 1 
with two equations, so, in this example at least, additional accuracy was available 
for less work. 

4K 5- VALUE 

~~~~ .~~~~/f 
IK 

/ / //}.6- VALUE 

.25K / < / / 7 7- VALUE 

.25K- / ^// / < EQUATIO/ / 

64 / / 

/wF~~~~ ,LJ 6/ / / 

INTEGRATION F Y"+ Y/X + 1-256/X2)YO EQUATI613 

.06 

INE2 ATONOF/ Y/X +EQUATIONS0X-6( 13 

7. Conclusion. There is numerical evidence to suggest that the proposed direct 
approach to higher order equations is superior to treating a larger first-order system. 
It has also been argued that the Nordsieck formulation is usually the best for any 
order method, although in very high-order methods for first-order equations, 
Adams may be superior. The new modified multistep methods may have an appli- 
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cation where start up time is a consideration, although these mainly serve to lay 
to rest the problem of getting around the Dahlquist stability result. 
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